2007年12月19日星期三

Die Casting vs. Other Processes

Each of the metal alloys available for die casting offer particular advantages for the completed part.

Zinc - The easiest alloy to cast, it offers high ductility, high impact strength and is easily plated. Zinc is economical for small parts, has a low melting point and promotes long die life.

Aluminum - This alloy is lightweight, while possessing high dimensional stability for complex shapes and thin walls. Aluminum has good corrosion resistance and mechanical properties, high thermal and electrical conductivity, as well as strength at high temperatures.

Magnesium - The easiest alloy to machine, magnesium has an excellent strength-to-weight ratio and is the lightest alloy commonly die cast.

Copper - This alloy possesses high hardness, high corrosion resistance and the highest mechanical properties of alloys cast. It offers excellent wear resistance and dimensional stability, with strength approaching that of steel parts.

Lead and Tin - These alloys offer high density and are capable of producing parts with extremely close dimensions. They are also used for special forms of corrosion resistance.


Dies, or die casting tooling, are made of alloy tool steels in at least two sections, the fixed die half, or cover half, and the ejector die half, to permit removal of castings. Modern dies also may have moveable slides, cores or other sections to produce holes, threads and other desired shapes in the casting. Sprue holes in the fixed die half allow molten metal to enter the die and fill the cavity. The ejector half usually contains the runners (passageways) and gates (inlets) that route molten metal to the cavity. Dies also include locking pins to secure the two halves, ejector pins to help remove the cast part, and openings for coolant and lubricant.

When the die casting machine closes, the two die halves are locked and held together by the machine¡¯s hydraulic pressure. The surface where the ejector and fixed halves of the die meet and lock is referred to as the "die parting line." The total projected surface area of the part being cast, measured at the die parting line, and the pressure required of the machine to inject metal into the die cavity governs the clamping force of the machine

没有评论: